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A B S T R A C T   

Increased exposure to environmental heavy metals and metalloids and their associated toxicities has become a 
major threat to human health. Hence, the association of these metals and metalloids with chronic, age-related 
metabolic disorders has gained much interest. The underlying molecular mechanisms that mediate these ef-
fects are often complex and incompletely understood. In this review, we summarize the currently known disease- 
associated metabolic and signaling pathways that are altered following different heavy metals and metalloids 
exposure, alongside a brief summary of the mechanisms of their impacts. The main focus of this study is to 
explore how these affected pathways are associated with chronic multifactorial diseases including diabetes, 
cardiovascular diseases, cancer, neurodegeneration, inflammation, and allergic responses upon exposure to 
arsenic (As), cadmium (Cd), chromium (Cr), iron (Fe), mercury (Hg), nickel (Ni), and vanadium (V). Although 
there is considerable overlap among the different heavy metals and metalloids-affected cellular pathways, these 
affect distinct metabolic pathways as well. The common pathways may be explored further to find common 
targets for treatment of the associated pathologic conditions.   

1. Introduction 

Heavy metals and metalloids have atomic numbers > 20 and den-
sities > 5 g/cm3 [1]. Some essential heavy metals including chromium 
(Cr), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum 
(Mo), selenium (Se), and zinc (Zn) have vital biochemical and physio-
logical roles in animals and plants at low concentrations [2,3]. These 
trace metals are significant constituents of some critical enzymes 
involved in redox reactions, biosynthesis, transport, and other metabolic 
activities [4]. Non-essential heavy metals and metalloid like arsenic 
(As), cadmium (Cd), mercury (Hg), nickel (Ni), and vanadium (V) have 
no known essential biological purpose; rather, they exert adverse health 
effects [4,5]. However, both essential and non-essential heavy metals 
can become toxic if their concentrations exceed certain thresholds [2]. 
Due to the intricate nature of the interactions between heavy metals and 
biological systems, the growing incidences of exposure to these elements 
have become increasingly challenging and difficult to address globally 
[6]. According to the International Agency for Research on Cancer 
(IARC), arsenic, hexavalent chromium, cadmium, and nickel are clas-
sified as group 1 carcinogen [7]. Arsenic and cadmium exert deleterious 
effects on glucose metabolism and other metabolic pathways. Glucose 

homeostasis has also been reported to be affected by manganese, mer-
cury, nickel, and zinc [8]. Exposure to arsenic, cadmium, copper, nickel, 
lead, and zinc increases the risk of developing diabetes [9]. Potential 
link has been suggested between heavy metal exposure and cardiovas-
cular complications. Such cardiotoxic heavy metals include arsenic, 
cadmium, lead, and mercury. Imbalances in essential metals, including 
copper, manganese, nickel, and zinc, are also associated with an 
increased risk of cardiovascular diseases (CVDs) [6,10]. Arsenic, cad-
mium, lead, and mercury are among the known endocrine disruptors 
that can affect brain development in the fetus as well as infant growth 
[11]. An increased risk for the onset and progression of neurodegener-
ative diseases, such as Alzheimer’s disease, Huntington’s disease, Par-
kinson disease, muscular dystrophy, and multiple sclerosis, was 
demonstrated following exposure to heavy metals, including arsenic, 
cadmium, copper, iron, lead, manganese, and mercury [11,12]. 

Humans can be occupationally and unintentionally exposed to heavy 
metals and metalloids [13,14]. Anthropogenic activities including ur-
banization and industrialization have increased human exposure to 
these heavy metals [15]. Many occupations involve exposure to these 
metals and their conjugates [14]. Mining and smelting, use of fertilizers 
and pesticides, land application of wastewater and sewage sludge, 
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electronic device disposal, and fossil fuel burning are some of the 
anthropogenic causes responsible for heavy metal exposure [5,13,16]. 
While ingestion or skin absorption of heavy metals is more common in 
general, inhalation of heavy metals is often the case in occupational 
settling. Vast numbers of workers are co-exposed to cadmium, cobalt, 
lead, and nickel in all industrial countries. Occupational exposure is 
mostly caused by industries that make chemical stabilizers and metal 
coatings, metal alloys, batteries, plastics, textiles, microelectronics, 
paint, wood preservatives, cosmetics, herbicides, pesticides as well as 
nuclear power plants. The elements used in such industrial plants are 
often released into the air during combustion or into the soil or water 
bodies as effluents [4,13]. However, the sources of heavy metals in the 
environment can be natural as well [16]. Many of these heavy metals 
occur naturally in the earth’s crust. Natural processes like volcanic 
eruptions, spring waters, erosion, sediment resuspension, and bacterial 
activity deposit these metals in soil and water systems [4,13]. 

These metals are bioaccumulative in nature [1]. Heavy metals are 
absorbed by plant roots and leaves and accumulated in fruits and veg-
etables. Contaminated fish, shellfish, and seafood can cause heavy metal 
poisoning [17]. In fact, the primary source of exposure to toxic heavy 
metals such as cadmium, lead, mercury, or nickel for individuals who 
are not professionally exposed is through the consumption of contami-
nated foods. Cereals, vegetables, meat and fish are the major 

contributors of dietary cadmium intake. In case of lead, water and 
beverages are the major contributors followed by vegetables, meat and 
meat products, milk and dairy products, and cereals. The intake of 
methylmercury (MeHg) is strongly associated with the quantity of fish 
consumed. Other contributors of dietary mercury intake include cereals, 
vegetables, and milk products. Nickel is mainly consumed through ce-
reals, vegetables, sugars, water and beverages, and fruits [18]. Vegeta-
bles, which are rich sources of important nutrients and antioxidants, are 
widely consumed by people all around the world. However, as these 
absorb both essential and toxic metals through the contaminated soil, 
consumption of metal-contaminated vegetables has been linked to a 
range of human health concerns including cancers. Amaranth, cori-
ander, eggplant, spinach, and tomato were found to contain high con-
centrations of heavy metals like cadmium, chromium, copper, iron, lead, 
manganese, mercury, nickel, and zinc [19]. Continuous monitoring of 
heavy metals in commercialized edible fish products, both freshwater 
(carp, flounder, rainbow trout, tench, tilapia, perch, blue grenadier, 
gilthead seabream, mackerel, etc.) and marine (eel, false kelpfish, 
croakers, etc.) is strongly recommended to avoid consumption of excess 
levels of arsenic, cadmium, chromium, copper, iron, lead, mercury, and 
zinc [20–22]. 

Heavy metals and metalloids trigger cell signaling cascades [13]. 
These signaling pathways and their regulatory components regulate cell 

Fig. 1. Sources of exposure to heavy metals and mechanisms of heavy metal toxicity.  
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growth, proliferation, differentiation, cell cycle regulation, DNA repair, 
immunological response, malignant transformation, and apoptosis, 
among others ( Fig. 1). Some of these heavy metals and metalloids, 
including arsenic, cadmium, chromium, iron, mercury, nickel, and va-
nadium, have become a significant public health concern due to their 
highly toxic nature among others [4,23–25]. This study investigates how 
these seven metalloid and metals (As, Cd, Cr, Fe, Hg, Ni, and V) affect 
cellular pathways and are associated with chronic diseases such as 
diabetes, cardiovascular diseases, carcinogenesis, neurodegenerative 
diseases, endocrine and reproductive abnormalities, inflammation, and 
allergic reactions. 

2. Common molecular mechanisms of heavy metal toxicity 

Toxic effects from a heavy metal depend on the type of metal, its 
chemical properties (i.e. type of metal conjugates and oxidative state), 
dose, duration, route of exposure, interaction with other chemicals in 
the environment, and the exposed individual’s age, gender, genetics, 
disease states, nutritional and immunological status [4,26]. In the 
human body, heavy metals are transported into cells, tissues and organs, 
where their interaction with biomolecules, including DNA and enzymes, 
disrupts cellular, endocrine, immunological, neurological, and repro-
ductive functions [4,13,16] ( Table 1). The majority of cellular disrup-
tions are caused by metals forming stable complexes with enzymes and 
receptors, thus blocking them, or by the production of reactive oxygen 
species (ROS), which disrupt the cell’s oxidative environment [3,27]. 
The generation of free radicals in cells by ionic heavy metals results in 
oxidative damage [3]. ROS are generated and consumed as part of 
normal metabolism. However, imbalance in their homeostasis and loss 
of control of their management are involved in the pathogenesis and the 
progression of different human diseases [28]. The Fenton reaction is one 
of the most common routes through which heavy metals such as iron, 
chromium, and vanadium produce hydroxyl radicals in the presence of 
hydrogen peroxide [13,29]. ROS can cause DNA damage as well as DNA 
strand breaks, i.e., single strand breaks (SSBs) and double strand breaks 
(DSBs), protein-protein cross-link formation, polypeptide backbone 
oxidation, amino acid side chain oxidation (particularly cysteine), and 
lipid peroxidation [30]. Heavy metals exert toxicity at protein level in a 
pleiotropic manner. These metals can bind and displace the original 
metal from proteins or metalloenzymes, causing cell dysfunction and 
toxicity [23]. These mostly interact with the —SH and —NH2 groups of 
proteins, altering conformations and inactivating enzymes [4]. Deple-
tion and inhibition of enzymes like glutathione (GSH) reductase induces 
ROS buildup and oxidative damage [4,31]. 

3. Metabolic pathways affected by heavy metals and metalloid 

3.1. Carcinogenesis 

3.1.1. Effects of arsenic 
The IARC classifies arsenic as a group 1 carcinogen [83]. When 

ingested, arsenic enters the cell predominantly in its pentavalent ‘arse-
nate’ form (As[V]). Once inside, As[V] is reduced to a more toxic 
trivalent ‘arsenite’ form (As[III]) that further undergoes hepatic 
methylation to form mono- and dimethyl arsenical species (MMA and 
DMA, respectively) by arsenite methyltransferase (AS3MT) [84]. The 
generation of MMA and DMA causes GSH depletion and ROS 
production. 

Inorganic arsenic is known to induce sister chromatid exchange and 
intrachomosomal homologous recombination. Enhanced recombination 
frequency may be related to inhibition of DNA replication and subse-
quent strand breaks [85]. Arsenic activates the phosphatidylinositol 
3-kinase/protein kinase B (PI3K/AKT) signaling pathway through 
increasing the activity of PI3K and subsequent phosphorylation of AKT 
through ROS generation, along with a possible role of mitogen-activated 
protein kinase (MAPK) signaling. Activation of the PI3K/AKT pathway 

Table 1 
Prominent metabolic effects of As, Cd, Cr, Fe, Hg, Ni and V.  

Heavy 
metals/ 
metalloid 

Effects 

Arsenic  • Increased risk of type 2 diabetes and a significant increase in 
morbidity and mortality compared to unexposed area [32,33].  

• Cardiovascular diseases (CVDs) e.g., atherosclerosis, coronary 
artery disease, and hypertension [34].  

• Respiratory diseases e.g., pulmonary tuberculosis, bronchitis, and 
lung cancer [35].  

• Neurotoxicity e.g., neuropsychological, neural, and nervous 
dysfunctions including language learning, executive functioning, 
memory, processing speed, mental retardation, and 
developmental disabilities [36,37].  

• Renal dysfunctions including albuminuria, proteinuria, and 
chronic kidney disease (CKD) [38].  

• Cancers of internal organs including bladder, kidney, liver, lung, 
uterus, and prostate [39].  

• GI disturbances, including nausea, vomiting, abdominal pain, and 
diarrhea [24].  

• Abnormal black-brown skin-pigmentation of the skin (melanosis) 
and skin lesions i.e. hardening of palms and soles or keratosis 
leading to hyperkeratosis and skin cancer [40].  

• Serious social implications, including social instability, social 
discrimination, ostracism, and marriage related problems, 
especially in developing countries like Bangladesh [36]. 

Cadmium  • Diabetes and diabetes related kidney diseases [41].  
• CVDs including hypertension, stroke, heart failure, 

atherosclerosis, and peripheral arterial disease [42].  
• Respiratory complications including flu-like symptoms (chills, 

fever, etc.) followed by chest pain, cough, and dyspnea, bron-
chospasm and pulmonary edema, intra-alveolar hemorrhage, 
thrombosis, lung damage and inflammation, chronic rhinitis, 
bronchitis, even lung cancer [43–45].  

• Neurological alterations such as headache, lower attention span, 
learning disorder, hyperactivity, olfactory dysfunction and 
memory deficits, even neuronal cell death and cell signaling 
pathway disturbances [46].  

• Cancer of kidney and other renal dysfunctions such as 
nephrotoxicity and nephropathy, renal tubular and glomerular 
dysfunction, kidney stones, and renal failure manifested by 
aminoaciduria, glucosuria, hypercalciuria, hyperphosphaturia, 
polyuria, etc. [41,47,48], renal damage leading to bone lesions, 
reduced mineral density in bones and other effects of 
osteomalacia and osteoporosis [48].  

• Cancers of vital organs like prostate, urinary bladder, breast, and 
liver [43]. 

Chromium  • Increased risk of CVDs [49].  
• Sneezing, watery nasal discharge, labored breathing, choking 

sensation in the throat, asthma and other respiratory distresses 
like chronic bronchitis, chronic irritation, chronic pharyngitis, 
and chronic rhinitis [50,51].  

• Symptoms of dizziness, headache, and weakness [50].  
• Renal toxicities including acute tubular necrosis, acute renal 

failure, low molecular weight proteinuria, and CKD [52,53].  
• Lung cancer and cancers of the nose and nasal sinuses [54,55].  
• Type IV hypersensitivity reaction characterized by eczema; GI 

hemorrhage, vertigo, thirst, abdominal pain, and bloody diarrhea; 
and in severe cases, coma and death [56]. 

Iron  • Insulin resistance, type 2 diabetes, and other conditions including 
gestational diabetes and prediabetes as well as obesity, MetS [57].  

• CVDs and arterial thrombosis [57,58].  
• Respiratory and lung diseases including chronic obstructive 

pulmonary disease, lung cancer, cystic fibrosis, idiopathic 
pulmonary fibrosis and asthma [59].  

• Neurological disorders e.g., epilepsy, Alzheimer’s disease, 
Parkinson’s disease, Huntington’s disease, and amyotrophic 
lateral sclerosis [60].  

• Increased urinary iron excretion, renal iron deposition, kidney 
injury and kidney failure [61].  

• Different types of carcinomas such as prostate cancer, pancreatic 
cancer, colorectal cancer, lung cancer, breast cancer, 
haematological cancers (leukaemias, lymphomas and myelomas 
such as multiple myeloma and non-Hodgkin’s lymphoma), head, 
neck, and renal cell carcinomas, and hepatocellular carcinoma 
[62–64]. 

(continued on next page) 
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promotes the mechanistic target of rapamycin (mTOR), effectors of 
which include hypoxia-inducible factor 1 (HIF-1), activator protein 1 
(AP-1), and nuclear factor kappa B (NF-κB) that play an important role 
in promoting cancer. Increased pathway activity and significant eleva-
tion in the levels of PI3K, AKT, and mTOR was observed in studies 
conducted on cell lines although there were wide variations in dose (0 to 
20 μM) and duration of treatment (4 hours to 26 weeks) [86]. The 
PI3K/AKT signaling network has numerous metabolic consequences. 
Aberrant activation of this pathway is one of the most frequent events in 
human carcinogenesis that results in uncontrolled cell growth, survival, 
and metabolism [87]. Arsenic-induced cell proliferation, migration and 
invasion ability, angiogenesis, and chemoresistance may be dependent 
on PI3K/AKT signaling [88,89]. Arsenic-induced increased expression 
of HIF-1α through PI3K/AKT activation can also upregulate vascular 
endothelial growth factor (VEGF) and promote malignant trans-
formation and proliferation [90]. Elevated HIF-1 correlates with tumor 
metastasis, angiogenesis, and poor prognosis [91]. 

Arsenic-induced carcinogenesis involves members of the MAPK 
families. Low-level (1 to 2 µM) arsenic trioxide (ATO) exposure activates 
extracellular signal-regulated kinases (ERK1/2), causing cell trans-
formation [92,93]. Inhibition of such activation enhances 
arsenic-induced apoptosis in acute promyelocytic leukemia (APL) cells 
[92]. Alternatively, high concentrations (> 50 to 200 µM) of arsenite 
induce apoptosis by the activation of c-Jun N-terminal kinase (JNK) and 
NF-κB pathways, suggesting a chemotherapeutic role of arsenic, which is 
already utilized in the treatment of APL [93]. Inhibition of JNK sup-
presses arsenic-dependent apoptosis [94]. ATO-induced ROS and 
intracellular redox imbalance stimulate the p38 MAPK pathway and 
induce apoptosis via the caspase-3 pathway, establishing the role of ATO 
in anticancer treatments for APL and chronic myelogenous leukemia 
(CML) [95]. The role of p38 activation in apoptosis induction is not 

clear. One study found that p38 inhibitors decreased ATO-dependent 
apoptosis, suggesting a function for p38 activation in apoptotic cell 
death [95]. However, another study found that p38 is a negative regu-
lator of ATO-induced apoptosis [94]. The latter proposed that inhibition 
of p38 activation enhances ATO-dependent JNK kinase activity, which is 
required for apoptosis. ATO and PI3K/mTOR inhibitors are being 
combined to treat APL and breast cancer [86,96]. Arsenic-associated 
skin carcinogenesis involves MAPK, NF-κB, and keratinocyte growth 
factor modulation [39]. 

3.1.2. Effects of cadmium 
The half-life of cadmium is 25 to 30 years [97]. According to the 

IARC, cadmium is a group 1 human carcinogen [98]. Cadmium produces 
ROS and depletes GSH [98,99]. Cadmium causes lung, breast, prostate, 
pancreatic, urinary bladder, kidney, and nasopharynx cancers [97,100]. 
The postulated mechanism behind cadmium-associated malignancies is 
a cascade of events beginning with tumor necrosis factor α (TNF-α) and 
nuclear factor-erythroid factor 2-related factor 2 (Nrf2) overexpression, 
followed by ROS production and aberrant gene expression, dysregula-
tion of cell proliferation, and apoptosis resistance [15]. Similar to 
arsenic, cadmium causes time- and dose-dependent malignant trans-
formation via HIF-1α (significant induction at 1.25, 2.5, and 5µM CdCl2 
but attenuation at (10 and 20 µM) VEGF (induced by 5 µM CdCl2) 
overexpression via ERK and PI3K/AKT pathways (induced by 5, 10, and 
20 µM CdCl2) and ROS generation [90,101]. Cadmium-induced ROS 
production in mitochondria activates the NF-κB pathway, increasing 
HIF-1α expression and worsening lung damage through macrophage 
activation [102]. Low-dose (1 µM) cadmium activates the 
p21-dependent MAPK pathways, including ERK1 and p38, but not the 
PI3K pathway, along with the activation of c-fos and c-myc early genes 
and NF-κB signaling-dependent genes, and promotes macrophage pro-
liferation [103]. Long-term (10 or 20 µM CdCl2 for 9 to 15 weeks) 
cadmium exposure can cause lung cancer via activating the Notch1 
signaling system. HIF-1α, AKT, and ERK may activate Notch1 in this 
mechanism as found in cell culture studies [104]. Cadmium-induced 
renal carcinogenesis may be caused by an altered β-catenin signaling 
pathway [15]. 

3.1.3. Effects of chromium 
Hexavalent chromium Cr[VI] compounds are highly toxic and cause 

most chromium toxicity. Cr[VI] has been classified as a human pulmo-
nary carcinogen [56,105], whereas trivalent Cr[III] is essential for 
humans and animals, playing a role in glucose, fat, and protein meta-
bolism [4,23]. 

Several factors are involved in chromium-induced carcinogenicity, 
including tissue and cell type, Cr[VI] concentration, exposure period, 
free radical formation, and Cr[V] and Cr[IV] reactivity. The hexavalent 
Cr[VI] does not bind to DNA or other macromolecules itself; rather, it is 
reduced to Cr[V], Cr[IV], and Cr[III] by reacting with cellular re-
ductants, triggering Fenton-type reactions. This generates hydroxyl 
radicals in the presence of hydrogen peroxide and induces oxidative 
stress. Chromium cross-linking and adduct formation with cellular an-
tioxidants cause oxidative stress and ROS generation leading to DNA 
damage, including DNA–chromium–protein crosslinks, DNA inter- and/ 
or intra-strand crosslinks, SSBs and DSBs, p53 point mutations, and lipid 
peroxidation [15]. These DNA–chromium adducts are difficult to repair 
and cause cellular malignancy. Hexavalent Cr[VI] activates the nuclear 
factor-erythroid factor 2-related factor 2/Kelch-like ECH-associated 
protein 1 (Nrf-2/Keap1) signaling pathway that plays a protective role 
by reducing chromium-induced ROS and apoptosis. In contrast to Nrf 
null cells, which could produce ROS at concentrations as low as 10 µM, 
wild-type cells needed higher doses of Cr[VI] (> 50 µM) to promote ROS 
production [106]. Aberrant overactivation of the Nrf-2 pathway in-
creases cancer cell proliferation by metabolic reprogramming, inhibi-
tion of cancer cell apoptosis, and augmentation of cancer stem cell 
self-renewal potential, indicating a bad prognosis [107]. Chromium 

Table 1 (continued ) 

Heavy 
metals/ 
metalloid 

Effects 

Mercury  • Insulin resistance, obesity, and MetS [65].  
• CVDs including dyslipidemia, hypertension and atherosclerosis 

[65,66].  
• Pulmonary conditions including bronchitis, pneumonitis, and 

pulmonary fibrosis [25,67].  
• Neurotoxicity that includes cognitive impairment, hearing loss, 

disequilibrium, constriction of the visual-field, memory problems, 
cerebellar ataxia, dysarthria, postural and action tremor [4,68].  

• Renal toxicity, especially to renal tubules [69].  
• GI disturbances including abdominal pain, indigestion, 

inflammatory bowel disease, ulcers and bloody diarrhea [25].  
• Endocrine disruption [70,71].  
• Reproductive toxicity [25]. 

Nickel  • Prevalence of type 2 diabetes [72].  
• Increased risk of CVDs [73].  
• Respiratory diseases including asthma and bronchitis, 

inflammations in the respiratory tract and lungs, and lung fibrosis 
[74,75].  

• Neurotoxicity, certain neurodegenerative and neuropsychiatric 
diseases, cognitive impairments, and mitochondrial dysfunctions 
[75–77].  

• Acute renal impairments including CKD and bone disorders [78, 
79].  

• Cancer of the respiratory tract, lung cancer, and cancers of the 
nose and nasal sinuses [54,75].  

• Inflammation of the digestive tract, and symptoms of irritable 
bowel syndrome [80].  

• Contact dermatitis and skin allergy [78].  
• Instant symptoms such as nausea, vomiting, vertigo, and irritation 

followed by delayed type symptoms like stiffness of the chest, 
constant cough, palpitations, sweating, tachycardia, visual 
disturbances, and weakness [74]. 

Vanadium  • Increased risks of a variety of pathologies like hypertension, CNS 
damage and neurological disorders, bronchial hyper-reactivity, 
systemic inflammation, hyper-coagulation, and cancers [81,82].  
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activates the PI3K/AKT signaling pathway, however its role in 
chromium-induced carcinogenesis is unknown [89]. Co-exposure to Cr 
[VI] and Cr[III] promotes malignant cell transformation via ERK and 
AKT signaling pathways [108]. Chronic Cr (VI) exposure has been 
shown to impair immune function in Wistar rats [109]. 

3.1.4. Effects of iron 
Iron is found in the earth’s crust and coexists with manganese in 

groundwater [14,110]. Iron overload causes free radical generation 
[30]. Iron metabolism and cancer biology are interconnected. Iron 
overload causes malignant transformation, neoplastic cell proliferation, 
immunological evasion, and therapeutic resistance [111,112]. On the 
other hand, ferroptosis caused by elevated levels of iron or by 
iron-chelating agents both have anti-cancer potential [112]. Iron is 
essential for cell survival, especially in highly active cells like tumor 
cells, since DNA replication is iron-dependent [113,114]. Iron-induced 
carcinogenesis may be linked to iron homeostasis disruption and ROS 
elevation. HIF activation increases iron absorption in tumor cells [64]. 
In human head and neck squamous carcinoma cells, iron overload ac-
tivates ERK1/2 and AKT signaling pathways and upregulates matrix 
metalloproteinase-9 (MMP-9) in a dose-dependent manner (significant 
responses at 15 and 25 µg/ml of ferric ammonium citrate). MMP-9 was 
found to be associated with the invasive and metastatic properties in cell 
line studies [115]. Bone morphogenetic proteins (BMPs) sense the cell’s 
iron state. High systemic iron enhances hepcidin expression [113,116]. 
High BMP levels coupled to increased hepcidin expression are connected 
to multiple myeloma, non-Hodgkin’s lymphoma, prostate, lung, breast, 
and renal carcinoma [63]. Compared to systemic iron, dietary iron 
augments wingless/integrated (WNT) signaling. Iron-induced malignant 
progression, including colorectal cancer, involves aberrant WNT 
signaling and β-catenin buildup [64]. WNT/β-catenin signaling system, 
similar to TGF-β pathway, regulates cancer cell metastasis and invasion, 
and iron modulates both routes [112]. Ferritin’s close association with 
the NF-κB signaling pathway can contribute to iron-induced inflamma-
tion and carcinogenesis [64]. Excessive iron impairs the function of 
CD4+ lymphocytes crucial for anti-tumor activity [117,118]. Drugs, 
medications, and other chemical compounds that induce ferroptosis in 
different cancer cells, such as pancreatic cancer, hepatocellular carci-
noma, gastric cancer, and colorectal cancer, among others, are 
well-established [119]. 

3.1.5. Effects of vanadium 
Vanadium is a metalloid with different oxidation states that can 

generate free radicals [13,82]. The pentavalent ‘vanadate’ is the most 
toxic and is readily taken up by erythrocytes [120]. Vanadium-induced 
ROS production and oxidative stress cause lungs or lung-associated cell 
apoptosis among other effects [81]. Vanadate-induced ROS and HIF-1α 
and VEGF expression through the PI3K/AKT pathway in human prostate 
carcinoma cells may contribute to vanadate-induced carcinogenesis. 
HIF-1α was induced by vanadate at a dose-dependent manner with 
maximum expression induced by 100 µM vanadate after 6 hours of 
treatment [121]. Vanadate-generated ROS also stimulates the activation 
of MAPK pathways—p38 and ERK, which can upregulate p21 and arrest 
cell growth [122]. Vanadate-induced DNA damage also increases p53 
activity. Vanadate-damaged cells undergo apoptosis due to ROS gener-
ation and p53 activation [123]. However, those destined for apoptosis 
sometimes escape and may be responsible for vanadate-induced carci-
nogenesis [124]. 

Vanadium complexes have anti-cancer properties, too, including 
generation of ROS, inhibition of tyrosine phosphatases, induction of 
apoptosis, DNA cleavage, cell cycle arrest, and lipoperoxidation [125, 
126]. One anti-proliferative vanadate compound was discovered to 
induce apoptosis in breast cancer cells by activating caspase-3, inhibit-
ing Notch signaling, and arresting cell cycle [127]. Some vanadium 
compounds are experimentally able to counteract tumor metastasis 
[128]. Most of these studies were conducted on cell lines rather than in 

animal models. 

3.1.6. Effects of other heavy metals 
Nickel, a group 1 carcinogen, depletes cellular GSH and increases 

ROS [75,129]. Nickel nanoparticles activate HIF-1, promoting cell 
transformation and tumor progression [130]. Nickel enhances patho-
physiological angiogenesis by producing VEGF through AKT, ERK, and 
NF-κB activation. Uncontrolled angiogenesis may contribute to 
nickel-induced carcinogenicity, including respiratory tract and lung 
cancer [131]. On the other hand, carcinogenicity of mercury, a group 3 
carcinogen meaning “not classifiable as to their carcinogenicity to 
humans,” is inconclusive. It is naturally present in three forms: 
elemental, inorganic, and organic, each with its own type of toxicity. 
MeHg is the most frequently encountered organic form in the environ-
ment, generated by microbial activity [4]. Due to its lipophilic nature, 
MeHg can easily cross the placental and blood–brain barriers, affecting 
the developing fetal brain and nervous system [4,14,132]. Organic and 
inorganic mercury increases the production of ROS [4]. Mercury can be 
an epigenetic carcinogen since it can impair gap junction intercellular 
communication and cause immunosuppression, according to one study 
[133]. Mercury activates stress genes involved in cell cycle regulation 
and apoptosis in human liver carcinoma cells, according to lab tests 
[67].  Table 2 summarizes the major carcinogenesis-associated signaling 
pathways that are affected by heavy metals and metalloids. 

Table 2 
Crucial signaling pathways associated with carcinogenesis that are affected by 
heavy metals and metalloids.  

Heavy metals and 
metalloids 

Key signaling pathways associated with 
carcinogenesisa 

Arsenic  • PI3K/AKT [86]  
• NF-κB [93]  
• JNK [93]  
• p38 [95]  
• ERK [92]  
• HIF-1α [90] 

Cadmium  • PI3K/AKT [101]  
• ERK [101,103]  
• HIF-1α [101,102]  
• NF-κB [102]  
• p38 [103]  
• Notch [104]  
• WNT/β-catenin [15]  
• TNF-α [15]  
• Nrf-2 [15] 

Chromium  • PI3K/AKT [108]  
• ERK [108]  
• Nrf-2 [106] 

Iron  • AKT [115]  
• ERK [115]  
• NF-κB [64]  
• HIF-1α [64]  
• WNT/β-catenin [64]  
• BMP [63] 

Mercury  • Potential epigenetic carcinogen [133] 
Nickel  • PI3K/AKT [131]  

• NF-κB [131]  
• ERK [131]  
• AMPK [131]  
• HIF-1α [130] 

Vanadium  • PI3K/AKT [121]  
• HIF-1α [121]  
• p38 [122]  
• ERK [122]  
• p53 [123]  
• Caspase-3 [127]  
• Notch [127]  

a other than direct reactive oxygen species (ROS) generation 
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3.2. Glucose metabolism and diabetes 

3.2.1. Effects of arsenic 
Insulin resistance causes type 2 diabetes (T2D) [134,135]. Peroxi-

some proliferator-activated receptor γ (PPARγ) and AKT play crucial 
roles in glucose metabolism [135,136]. PPARγ increases the expression 
of insulin-sensitive genes including glucose transporters type 2 (GLUT2), 
type 4 (GLUT4), and β-glucokinase [134–136]. Trivalent form of iAs (As 
[III]) inhibits PPARγ and mTOR Complex 2 (mTORC2)-target PKB/AKT 
in liver cells and adipocytes [33,137,138]. By suppressing expression 
and phosphorylation of AKT, iAs interferes with GLUT4 mobilization 
(0.5 to 1 mM of arsenite or 5 to 30 µM of phenylarsine oxide), hence 
inhibits glucose uptake in adipocytes [33,139], and can even trigger 
GLUT4 degradation in adipocytes [140,141]. Insulin-stimulated p38 
MAPK phosphorylation boosts GLUT4 translocation. Arsenic can also 
alter p38 MAPK signaling and insulin-stimulated glucose absorption, 
leading to insulin resistance and T2D [141,142]. Chronic arsenic expo-
sure increases TNF-α (at a concentration of 1 µM) and interleukin 6 
(IL-6), which cause insulin resistance. Low levels of arsenite (≤ 1 µM) 
also activate NF-κB that is linked with both insulin resistance and β cell 
dysfunction. However, higher concentrations (≥ 5 µM) promote 
apoptosis rather than NF-κB activation [139]. T2D disrupts 
pentose-glucuronate interconversion. Metabolites that are associated 
with iAs exposure are strongly correlated with this pathway [143,144]. 

Arsenic compounds bind to —SH and—PO4 groups in glucose- 
metabolizing enzymes and biomolecules with high affinity. Pentava-
lent As[V] interacts with ATP phosphate binding sites and inhibits ATP- 
dependent processes like pentose phosphate pathway (PPP) and insulin 
secretion [139]. Trivalent As[III] forms covalent bonds with the disul-
fide bridges present in insulin, insulin receptors, GLUTs, and enzymes e. 
g., pyruvate dehydrogenase and α-ketoglutarate dehydrogenase [139]. 
In its oxidative phase, the PPP creates reduced nicotinamide adenine 
dinucleotide phosphate (NADPH), an important GSH cofactor. Arsenic 
exposure significantly downregulates glucose-6-phosphate dehydroge-
nase (G6PDH), which catalyzes NADPH production. Disruption of the 
PPP pathway and reduced activity of G6PDH further interrupts the cell’s 
ability to deal with oxidative stress and can lead to oxidative 
stress-induced diabetes [145]. Arsenic-induced alteration in glucose 
absorption may also raise the risk for metabolic syndrome (MetS) 
because of a linear association between arsenic concentrations and MetS 
components, such as plasma glucose, lipids, and blood pressure [146]. 
MetS is a major risk factor for T2D and CVDs [147]. 

3.2.2. Effects of cadmium 
Cadmium affects insulin secretion from pancreatic β-cells. While low 

cadmium levels enhance insulin release, high levels diminish the rate 
[41]. Subchronic exposure (1.0 to 2.0 mg/kg cadmium for 7 to 14 days) 
significantly increases blood glucose levels by increasing the activities of 
all four gluconeogenesis enzymes: hepatic pyruvate carboxylase, phos-
phoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase, and 
glucose-6-phosphatase [41,148]. Cadmium lowers glucose transport 
and GLUT4 expression. Such interruptions may contribute to diabetes, 
diabetes-related hyperglycemia, and kidney diseases [41]. 
Cadmium-mediated PPARγ downregulation inhibits pre-adipocyte dif-
ferentiation, and adipocyte differentiation failure has been linked to 
T2D [149,150]. Decreased PPARγ also causes a decrease in adipose 
tissue mass and disruptions in adipose-derived hormones which may 
contribute to glucose and lipid dysregulation, insulin resistance, CVDs, 
and hypertension [151]. Cadmium-induced elevation of 
pro-inflammatory lipids such as lysophosphatidylcholine (lysoPC) can 
activate the inhibitory kappa B kinases (IKKs) that regulate the NF-κB 
pathway and is associated with chronic inflammatory diseases like 
obesity and diabetes. Cadmium exposure also elevates pro-inflammatory 
cytokines like TNF-α, IL-6 and IL-1β, which are linked to diabetes [152]. 

3.2.3. Effects of chromium 
Chromium, unlike arsenic and cadmium, may help patients with 

diabetes and MetS by improving insulin sensitivity and glucose meta-
bolism [153]. Another study, however, revealed no significant effect of 
chromium on glucose or lipid metabolism in non-diabetics [154]. 
Chromium supplements reduce the risk of T2D [154,155]. Chromium 
binds to insulin receptors and stimulates their tyrosine kinase activity, 
potentiating insulin action. It’s a cofactor for optimum insulin activity 
[153,154]. It also increases insulin sensitivity by inhibiting phospho-
tyrosine phosphatase that dephosphorylates insulin receptors [153]. 
Chromium stimulates insulin signaling downstream effectors, such as 
the PI3K/AKT pathway, which increases GLUT4 translocation activity 
and transiently enhances the AMP-activated protein kinase (AMPK) 
pathway, resulting in increased glucose uptake [156]. At the same time, 
chromium suppresses the tyrosine phosphorylation of c-Jun by inhibit-
ing the JNK pathway. Phosphorylated c-Jun usually attenuates insulin 
signaling by phosphorylating the serine residue of insulin receptor 
substrate 1 (IRS-1) [156]. 

3.2.4. Effects of iron 
High levels of nonpathological iron, such as dietary iron, have been 

found to be associated with an increased risk of diabetes. Elevated serum 
ferritin levels are associated with insulin resistance, T2D (including 
gestational diabetes and prediabetes), obesity, MetS, and CVDs [57]. 
High ferritin levels shows a positive correlation with MetS components 
including serum triglycerides (TG), plasma glucose, and insulin resis-
tance markers even after adjusting for age, race, body mass index (BMI), 
smoking status, alcohol consumption, and C-reactive protein (CRP) level 
[157]. Iron homeostasis is controlled by the iron-regulatory hormone 
hepcidin and its receptor ferroportin [158]. Dietary iron overload, 
transfusion-induced iron overload, and inflammatory disorders increase 
hepcidin. An association exists between high ferritin levels and hepci-
din, TNF-α, IL-6, and CRP, which may link iron to T2D. Iron can increase 
the expression of pro-inflammatory cytokines like TNF-α and IL-6, as 
well as CRP [159]. CRP concentration is a well-established insulin 
resistance marker associated with T2D [160], while elevated levels of 
pro-inflammatory cytokines are biomarkers of obesity [159]. IL-6 also 
stimulates hepcidin synthesis in hepatocytes [159]. Some evidence 
suggests that elevated ferritin causes diabetes, although the reverse 
scenario is also supported [57]. As reviewed, altered iron concentration 
affects glucose metabolism by generating ROS and disrupting intracel-
lular signaling pathways. High iron-induced oxidative damage reduces 
insulin gene expression and causes β cell failure and insulin resistance by 
inhibiting antioxidant defenses like catalase and superoxide dismutase 
2. Iron overload reduces HIF-α, which downregulates GLUT1 and GLUT2 
transporters, impairing glucose sensing and insulin secretion. However, 
normal physiological responses may involve ROS generated by inter-
mediate iron levels [57]. Adiponectin levels, which are reduced in 
obesity, T2D, and CVDs, are negatively correlated with ferritin levels 
[161]. Adiponectin activates AMPK to increase fatty acid oxidation and 
glucose uptake in muscle and adipose tissue. AMPK activation promotes 
glucose uptake by increasing GLUT4 translocation [162]. Although, iron 
can activate the AMPK pathway independently of adiponectin that 
generally exerts antidiabetic effects [57]. Iron, therefore, has a complex 
association with diabetes. 

3.2.5. Effects of other heavy metals 
Studies link mercury to the pathogenesis of MetS. Mercury-induced 

oxidative stress causes insulin resistance, hypertension, dyslipidemia, 
and obesity, however direct association with diabetes is inconclusive 
[65]. MeHg can modulate the PI3K/AKT signaling pathway, although 
the manner of modulation is debatable. Some studies have found that 
MeHg (100 nM to 1 µM for 24 hours) decreases AKT phosphorylation 
and downregulates PI3K/AKT in neuronal cells [163], while others re-
ported low dose MeHg-induced upregulation of AKT phosphorylation 
and activation of PI3K/AKT signaling pathway (1 µM to up to 2 µM) 
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through mercury-induced oxidative stress leading to pancreatic β-cell 
dysfunction associated with diabetes as well as in neuroblastoma cells 
[163,164]. The prevalence of hyperglycemia, hypertension, and T2D is 
also associated with increased nickel exposure [72,165]. Nickel-induced 
ROS may damage insulin function and induce glucose deregulation [72]. 

Similar to chromium, vanadium compounds can enhance insulin 
response in T2D [166]. Vanadate is a phosphate structural analog that 
inhibits phosphatases and related enzymes. In diabetic rats, vanadium 
compounds were found to inhibit multiple phosphatases, especially 
phosphotyrosine phosphatase that dephosphorylates the autophos-
phorylated active insulin receptor, suggesting a potential use of vana-
dium supplements in the treatment of T2D [167]. By preventing the 
dephosphorylation of tyrosine phosphorylated residues in the insulin 
receptor, vanadium activates the PI3K/AKT pathway responsible for 
carbohydrate metabolism. In addition, vanadium also elevates the 
expression of GLUT4, stimulates glycogenesis, and inhibits glycogenol-
ysis and gluconeogenesis [168].  Table 3 shows the key signaling 
pathways associated with glucose metabolism and diabetes that are 
affected by heavy metals and metalloids. 

3.3. Lipid metabolism, adipogenesis, and atherosclerosis 

3.3.1. Effects of arsenic 
Arsenic has an enormous impact on lipid and glycolipid metabolism. 

Long-term arsenic exposure can deteriorate the structural integrity and 
functions of the cardiovascular system, leading to CVDs, hypertension, 
dyslipidemia, obesity, and fatty liver disease [170–172]. Depending on 
arsenic species, dose, and affected tissue, subchronic exposure causes 
distinct dyslipidemia patterns [172]. Arsenic exposure has been linked 
to an increase in lysoPCs and lipid oxidation, including glycolipids, 
phospholipids, and cholesterol, as well as alterations in TG and plasma 
cholesterol [170,171]. Arsenic-induced oxidative stress damages cells 
by breaking down membrane phospholipids [170]. Arsenic exposure 
alters several key polyunsaturated fatty acids (PUFAs) in the gut 
microbiome [173]. Arsenic exposure is inversely related to dietary lipid 
(monounsaturated, polyunsaturated, and saturated) intake [174]. 
Arsenic-induced AKT activation in preadipocytes inhibits preadipocyte 
differentiation. ATO (at a concentration of 3 µM) promotes AKT 
expression and phosphorylation and inhibits its interaction with PPARγ 

[175]. Arsenic-mediated down-regulation of PPARγ also inhibits adi-
pogenic differentiation [176]. Arsenic also disrupts mitochondrial 
β-oxidation of fatty acids, the principal fat metabolism pathway for 
energy generation, by inhibiting thiolase leading to partial inhibition of 
fatty acid oxidation and ketogenesis [177]. 

Atherogenesis is a pathophysiological condition characterized by 
inflammation and proliferation of smooth muscle cells, followed by 
thrombosis and vascular wall damage [27,178]. Arsenic may cause 
atherosclerosis by increasing transcription of growth factors like 
granulocyte-macrophage colony-stimulating factor (GM-CSF) and 
VEGF, inflammatory cytokines like TNF-α, IL-1 and IL-8, chemokines 
like monocyte chemoattractant protein-1 (MCP-1), and adhesion mole-
cules such as vascular cell adhesion molecule 1 (VCAM-1), intercellular 
Adhesion Molecule 1 (ICAM-1) [179,180]. Pro-inflammatory cytokines 
and chemokines, such as MCP-1 and IL-6, are elevated in atherosclerotic 
lesions, the expression of which is also induced by arsenic-generated 
ROS, suggesting the role of arsenic-induced inflammation in athero-
sclerosis development [181]. IL-6 plays a key role in the synthesis of 
acute phase proteins, including CRP [182]. CRP has a major contribu-
tion to the development of atherosclerosis. CRP decreases the synthesis 
of inducible nitric oxide synthase (iNOS) that is responsible for NO 
imbalance. It also induces the expression of VCAM, ICAM, E-selectin, 
and MCP-1, and upregulates IL-8 that promotes the recruitment of 
mononuclear cells in sites of inflammation. Both of these events 
contribute to atherogenesis [183]. Atherogenesis is strongly associated 
with an oxidative stress. This process begins with low-density lipopro-
tein (LDL) oxidation followed by foam cell formation [179]. Generated 
ROS can act as signal molecules for increased transcription of NF-κB and 
AP-1, which upregulates vascular adhesion molecules and chemokines 
such as VCAM-1, MCP-1, TNF-α, IL-1β, and IL-8 [27,66]. Increased 
expression of IL-8, NF-κB, and AP-1 can aggravate atherosclerosis by 
increasing platelet aggregation [27]. Exposure to arsenic and 
arsenic-induced ROS activates the NF-κB pathway and induces IL-8 
expression [66]. 

Arsenic reduces cyclic guanosine monophosphate (cGMP)—a NO 
surrogate, and inhibits endothelial nitric oxide synthase (eNOS) in 
endothelial cells [184]. NO suppresses pro-inflammatory mediators by 
inactivating the NF-κB pathway. Arsenic also inhibits iNOS by binding to 
NF-κB and lipopolysaccharide-induced NO production by inactivating 
NF-κB and ERK1/2 MAPK pathways [185]. Thus, arsenic-mediated 
reduced NO levels contribute to arsenic-related atherosclerosis and hy-
pertension [184]. Arsenic exposure, however, has been reported to 
produce NO too. The difference in NO production may be caused by 
differences in arsenic types, exposure length, and affected cells or tissues 
[185]. Arsenic inhibits the liver X receptors, which also promotes the 
risk of atherosclerosis and plaque formation and is supposedly involved 
in arsenic-induced CVDs [186]. 

3.3.2. Effects of cadmium 
Cadmium exposure is associated with intracellular lipid accumula-

tion and elevated levels of pro-inflammatory lipids, e.g., lysoPCs [152]. 
Owing to its similarity to zinc, cadmium may displace zinc in antioxi-
dant enzymes like paraoxonase 1, catalase, superoxide dismutase, and 
glutathione peroxidase. Low levels of paraoxonase 1 activity may be 
associated with an increased prevalence of CVDs [187]. 
Cadmium-induced inactivation of antioxidant enzymes also increases 
lipid peroxidation. Such atherogenic changes in lipid profile increases 
the incidence of CVDs, stroke, and peripheral artery disease [97]. A 
dose-dependent increase in LDL and oxidized LDL is associated with 
cadmium exposure (2 to 50 mg/L CdCl2) [188]. An increase in CRP and 
fibrinogen in population studies and VCAM-1 in animal study, and a 
decrease in NO have also been reported, similar to arsenic [10]. The 
impaired NO functioning and signaling is caused by cadmium-induced 
reduction of phosphorylation of eNOS that causes abnormalities in 
normal arterial tone [187]. Low dose cadmium treatment is accompa-
nied by an increase in VEGF and upregulation of MAPK (p38, ERK and 

Table 3 
Major glucose metabolism and diabetes-associated signaling pathways affected 
by heavy metals and metalloids.  

Heavy metals and 
metalloids 

Major signaling pathways associated with glucose 
metabolism and diabetes 

Arsenic  • PI3K/AKT [33,141]  
• PPARγ [138]  
• p38 MAPK [141]  
• NF-κB/PTEN [139]  
• Pentose Phosphate Pathway [139]  
• Pentose/Glucuronate Interconversion [143,144]  
• Pro-inflammatory cytokines [139] 

Cadmium  • PPARγ [149]  
• C/EBPα [149]  
• NF-κB/PTEN [152]  
• Gluconeogenesis [41,148]  
• Glycogenolysis [169]  
• Pro-inflammatory cytokines [152] 

Chromium  • PI3K/AKT [156]  
• AMPK [156]  
• JNK MAPK [156]  
• P-Tyr Phosphatase Inhibition [153] 

Iron  • HIF-1α [57]  
• AMPK [57]  
• Pro-inflammatory cytokines [159] 

Mercury  • PI3K/AKT [163,164] 
Nickel  • Gluconeogenesis [72]  

• Glycogenolysis [72] 
Vanadium  • P-Tyr Phosphatase Inhibition [167]  
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JNK) pathways [189], and the role of VEGF in human coronary 
atherosclerosis is well established [190]. Lab studies link cadmium 
exposure to higher prevalence and mortality from CVDs [188]. 

3.3.3. Effects of mercury 
Mercury, especially MeHg, has a high affinity for —SH groups and 

selenium, which reduces antioxidant defense by disrupting GSH, GPX, 
and catalase and promotes free radical-mediated oxidative stress and 
lipid peroxidation [66,191] It can promote atherosclerosis by inhibiting 
NF-κB activation by lipid peroxidation or by binding to the —SH groups 
present in NF-κB. Inhibition of NF-κB is associated with inactivation of 
iNOS and suppression of NO production [66]. Consequently, the risk of 
myocardial infarction and the mortality rate from coronary heart disease 
and CVDs are increased [191]. Mercury exposure activates p38 MAPK 
and increases the expression of TNF-α and interferon gamma (IFN-γ), 
which promote atherosclerosis [192,193]. Exposure to mercury (con-
centrations ≥ 10 µM after 24 hours were found to be toxic) can also 
change membrane K+ conductance, modulate chlorine channels, deac-
tivate Na+/K+-ATPase, inhibit phospholipid turnover, and activate 
phospholipase C (PLC). However, lower concentrations (0.5 to 5 µM) is 
enough to cause DNA damage [132,194]. 

3.3.4. Effects of nickel 
Nickel increases the fluidity of membranes containing phosphatidy-

linositol-(4,5)-bisphosphate [PI(4,5)P2] and the lipid clustering of 
phosphatidylinositol-3-phosphate (PI3P) systems, interfering with the 
development of signaling lipid domains and leading to nickel toxicity 
[195]. Nickel exposure upregulates the expression of pro-inflammatory 
cytokines (TNF-α and IL-6), VCAM-1, MCP-1, and cluster of differenti-
ation 68 (CD68). In early atherosclerosis, MCP-1 promotes monocyte 
adherence. CD68 is a biomarker of macrophage infiltration during 
atherosclerosis. VCAM-1 promotes monocyte adhesion and accumula-
tion on vessel walls. They provide a plausible mechanism for the 
increased risk of atherosclerosis associated with nickel [196]. Excess 
nickel exposure-associated VEGF production in a dose-dependent 
manner (at concentrations of 125, 250, and 500 µM of NiCl2) through 
AKT, ERK, and NF-κB activation may be analogous to 
cadmium-associated VEGF production and atherosclerosis as shown in 
cell culture studies [131,188]. 

3.3.5. Effects of other heavy metals 
Ferroptosis is an iron-dependent cell death process resulting from 

iron accumulation and lethal lipid species, e.g. ceramide and lysoPC, 
derived from lipid peroxidation, notably of PUFAs [197,198]. These 
lipids and iron-induced ROS inhibit glutathione biosynthesis and 
glutathione peroxidase, which suppress ferroptosis [119]. Once formed, 
lipid peroxides enhance ROS signaling and lead to toxic byproduct 
accumulation (malondialdehydes and 4-hydroxynonenal) that react 
with DNA bases, proteins, and other nucleophilic molecules, causing 
cytotoxicity [198]. Chronic iron overload increases both systemic and 
vascular ROS production, reducing NO bioavailability, impairing vaso-
relaxation, and accelerating arterial thrombosis [58]. 

Vanadium can act as a cardioprotective agent. The activation of 
vanadium-induced PI3K/AKT signaling pathway results in the phos-
phorylation of eNOS and production of NO. NO, in turn, activates cGMP 
which leads to the subsequent inhibition of Ca2+-ATPase and activation 
of potassium channels. These cellular events are involved in the regu-
lation of angiogenesis and vasorelaxation [168]. 

3.4. Neurodegeneration 

3.4.1. Effects of arsenic 
Arsenic-induced neurotoxicity can occur through a number of 

mechanisms, including ROS-induced oxidative stress, decreased activ-
ities of mitochondrial complex I, II-III, and IV, lipid peroxidation fol-
lowed by DNA damage and neuronal cell death, apoptosis by caspase-9, 

p38, and JNK activation, decreased acetylcholinesterase activity, and 
Ca2+ imbalance. These are linked to central and peripheral nervous 
system damage and may explain arsenic-related neurological symptoms 
[199–202]. There is a dose- (5 to 150 ppb) and exposure (acute vs. 
chronic) dependent relationship between higher arsenic levels in 
drinking water and peripheral nerve abnormalities [11]. Neurological 
impacts of arsenic include depression, insomnia, anxiety, and cognitive 
impairments affecting vocabulary, mental acuity, language precision, 
IQ, and comprehension [203]. As[III] generates β-amyloid plaques and 
hyperphosphorylated tau proteins—pathological hallmarks of Alz-
heimer’s disease [204]. Arsenic reduces stem cell development into 
neurons by altering the feedback loop between WNT and Notch 
signaling pathways [205]. 

3.4.2. Effects of iron 
Since the brain consumes 20% of body oxygen, the central nervous 

system (CNS) is especially vulnerable to oxidative stress. Iron over-
exposure causes oxidative stress and ROS, which upregulate the c-fos 
gene. The Fos transcription regulator forms a complex, AP-1, with 
another protein named Jun. The AP-1 site is in the promoter region of 
several neuronal activity or degeneration genes. Iron-induced oxidative 
stress may activate early genes, which may explain the link between iron 
toxicity and neurological disorders such as epilepsy, stroke, Alzheimer’s 
disease, Parkinson’s disease, Huntington’s disease, and amyotrophic 
lateral sclerosis (ALS) [60]. Iron-induced ferroptosis may contribute to 
Alzheimer’s, Parkinson’s, and Huntington’s disease [206–208]. Iron 
accumulation in glial cells may promote neuroinflammation and aging 
[209]. Accumulation of iron in the brain is also connected with acer-
uloplasminemia and neuroferritonopathy [11]. Free iron-induced 
oxidative damage also activates the PI3K/AKT pathway which in-
activates glycogen synthase kinase 3-beta (GSK3β). GSK3β plays a key 
role in the pathogenesis of Alzheimer’s disease, Huntington’s disease, 
and bipolar disorder [210]. 

3.4.3. Effects of mercury 
The CNS is the primary target of MeHg toxicity. Mercury-induced 

alterations in protein synthesis, a key factor in cellular degeneration, 
may cause nervous system changes [211]. Another important factor in 
MeHg-induced neurotoxicity is oxidative stress that damages mito-
chondria. MeHg accumulation and oxygen depletion alter electron 
transport and mitochondrial membrane potential, inducing apoptosis 
[132]. Furthermore, MeHg inhibits astrocytic HIF-1α and related 
downstream genes like GLUT1 and VEGF in a time- and 
concentration-dependent manner, resulting in lower cell proliferation 
and higher cytotoxicity in primary rat astrocytes [212]. AKT phos-
phorylation is similarly lowered by MeHg exposure (1 µM for 24 hours) 
in neuronal cells, resulting in downregulation of the PI3K/AKT signaling 
pathway that triggers caspase-3-dependent apoptosis and lowers 
neuronal viability [163]. Non-canonical Notch signaling pathways affect 
the developing drosophila fetal nervous system [213]. Mercury exposure 
increases the chance of neurological diseases like Alzheimer’s. Alz-
heimer’s disease patients have higher brain mercury levels than normal 
individuals [132]. Mercury inhibits guanosine triphosphate (GTP) 
binding, even at low concentrations, which is required for tubulin syn-
thesis and neuronal function [214]. Case reports also suggest a link 
between inorganic mercury exposure and Alzheimer’s disease, multiple 
sclerosis, and ALS [11,215]. 

3.4.4. Effects of vanadium 
Vanadium-induced neuropathology, including neurobehavioral, 

neurochemical, and neurocellular changes, is known [82]. 
Vanadium-induced apoptosis and DNA cleavage leading to neuro-
inflammation, disruption of the blood brain barrier, dendritic spine loss, 
and behavioral, cognitive, and motor impairments including memory 
alteration are due to ROS generation and consequent lipid peroxidation 
[216]. Vanadate induces both extrinsic and intrinsic apoptosis in cell 
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cultures [124]. Chronic vanadium exposure activates microglial cells 
which is associated with neurodegenerative conditions like Alzheimer’s 
disease [82]. 

Interestingly, protective effects of vanadium compounds on cogni-
tive impairments and Alzheimer’s are also known. A link exists between 
T2D and Alzheimer’s disease. Amyloid β binds to insulin receptor and 
alters downstream AKT and GSK3β activity, impairing brain insulin 
signaling [217–219]. Additionally, tau deletion induces brain insulin 
resistance through altered IRS-1 and phosphatase and tensin homolog 
deleted on chromosome ten (PTEN) activities, leading to cognitive and 
metabolic impairments [220]. While vanadium compounds are strong 
potential candidates for treating T2D [221,222], one improves the 
pathological alterations involved in Alzheimer’s disease [223]. This 
compound, known as BEOV (bis—(ethylmaltolato)oxidovanadium), in-
creases PPARγ causing amyloid β downregulation and inhibits tau 
hyperphosphorylation by modulating the AKT/GSK3β pathway. 
Another vanadium-containing enzyme that mimics around six naturally 
occurring antioxidants (vanadium carbide MXene-based nanoenzyme) 
can reestablish redox homeostasis and ameliorate oxidative 
stress-induced neurodegenerative and inflammatory disorders [28]. 

3.4.5. Effects of other heavy metals 
Cadmium-induced apoptosis is linked to ROS generation, Ca2+

accumulation, caspase-3 upregulation, B-cell lymphoma 2 (BCL-2) 
downregulation, and p53 deficiency [97]. Cadmium-generated ROS 
induces neuronal apoptosis by activating mTOR and PI3K/AKT path-
ways while inhibiting PTEN and AMPK pathways [224]. Tau protein 
buildup, which is linked to Alzheimer’s disease, is accelerated by cad-
mium [203]. Cadmium also promotes neuronal cell death by activating 
the Fas-Fas ligand (FasL) pathway, which may explain its neurotoxicity 
[225]. 

Limited literature exists on chromium’s neurotoxicity. The role of 
chromium-generated ROS in the brain is unknown. One study reported 
that Cr[VI] elevated ICAM-1 and VCAM-1 expression and activated NF- 
κB–caspase-1–IL-1β cascade which may associate chromium with 
neurodegenerative diseases [226]. 

Nickel increases the expression of caspases, cytochrome c, BCL-2- 
associated X protein (BAX), and BH3-interacting domain death agonist 
(BID) proteins, whereby lowering the expression of BCL-2. BAX and BID 
proteins are proapoptotic, whereas BCL-2 is antiapoptotic [227]. These 
proteins initiate intrinsic apoptosis by releasing mitochondrial cyto-
chrome c and activating caspase-9 [228]. Nickel also promotes Fas-FasL 
interaction in the extrinsic apoptotic pathway, triggering caspase-8 and 
caspase-10 pathways [75]. Excessive apoptosis is responsible for many 
neurodegenerative diseases and nickel-induced lung inflammation [75].  
Table 4 summarizes the predominant extrinsic and intrinsic apoptotic 
pathways that are associated with heavy metal-induced neurotoxicity. 

3.5. Inflammation and immune response 

3.5.1. Effects of arsenic 
Arsenic exposure alters macrophage, dendritic, and T lymphocyte 

development, activation, and/or proliferation [230]. Chronic arsenic 
exposure inhibits NF-κB-related survival pathways and increases 
caspase-3 and caspase-8 activity, leading to monocytic apoptosis [231]. 
In addition, monocyte-derived macrophages are accompanied with 
reduced adhesion capacity, decreased NO production, diminished CD54 
and F-actin expression, and impaired phagocytic activity and macro-
phage functions [232]. At higher concentrations, arsenic decreases the 
phagocytic activity of dendritic cells and dendritic cell-dependent T cell 
activation. Human CD4+ and CD8+ T cells are apoptosed by 
arsenic-induced ROS [230]. Arsenic exposure increases neutrophil 
apoptosis through MAPKs. Treatment with iAs decreases phagocytic 
activity and increases Toll-like receptors TLR2 and TLR4 production, 
modulating host immune response and causing adverse effects [233]. 
Pro-inflammatory cytokines, growth factors, and chemokines, such as 

TNF-α, IL-1β, IL-6, IL-8, IL-12, CRP, and MCP-1, are upregulated in in-
dividuals exposed to arsenic for a long time [230,234,235]. TNF-α is 
upregulated in chronic low level arsenic exposure that may contribute to 
the systemic inflammation through TNF signaling-mediated apoptosis of 
CD4+ T cells [234,236]. This phenomenon, known as arsenic immuno-
toxicity, characterized by limited immune surveillance evident from 
decreased bacterial phagocytosis by macrophages and reduced T cell 
proliferation, increases susceptibility to infections. Arsenic-induced 
immunosuppression is associated with an increased incidence of diar-
rhea, respiratory tract infections such as influenza A and pulmonary 
tuberculosis, and even lung cancer [230]. However, arsenic-induced 
immunosuppression may prevent or treat immune system damage in 
related diseases. 

Inflammasome complexes are composed of NOD-like receptor pro-
teins (NLRs) that specifically control caspase-1-dependent cleavage of 
pro-IL-1β and pro-IL-18. Arsenite and ATO suppress pro-IL-1β cleavage 
by inhibiting NLRP1, NLRP3, and NAIP5/NLRC4 [230]. The liver plays a 
crucial role in the immune complex-mediated removal of foreign anti-
gens with the help of IgG mediated by Fcγ receptor (FcγR) binding 
[237]. Low level chronic arsenic exposure suppresses the expression of 
FcγR and complement receptors [234]. 

3.5.2. Effects of cadmium 
Cadmium impairs both innate and adaptive immunity. As reviewed, 

cadmium exposure impairs macrophage surface FcγRII expression and 
phagocytic capacity, inhibits macrophage activity in response to lipo-
polysaccharides and TLRs via decreased production of pro-inflammatory 
cytokines such as TNF-α and IL-1, induces immunosuppressive reactions 
and apoptosis of neutrophils and dendritic cells, and reduces the number 
of natural killer (NK) cells in the field of innate immunity. In case of 
adaptive immunity, cadmium decreases the CD4+/CD8+ ratio, down-
regulates cytokine production in Th1 (e.g., IFN-γ and IL-2) and Th2 (e.g., 
IL-4) lymphocytes, suppresses the expression of class I and class II major 
histocompatibility complex (MHC) molecules in B lymphocytes, alters 
signaling through them, and inhibits B-lymphocytic activity and 
immunoglobulin IgE synthesis [238]. Short-term cadmium exposure 

Table 4 
Neurotoxicity-associated predominant pathways affected by heavy metals and 
metalloids.  

Heavy metals 
and metalloids 

Principal pathways involved in neurotoxicity  

Caspase pathways Others 
Arsenic  • Caspase-9 by cyt c 

release [199]  
• ROS generation [202]  
• Ca2+ imbalance [202]  
• p38 and JNK [202]  
• WNT and Notch [205]  
• Reduced acetylcholinesterase 

activity [201] 
Cadmium  • Caspase-9 by p53 

deficiency & reduced 
BCL-2 [97]  

• Caspase-8 by Fas-FasL 
[225]  

• ROS generation [97]  
• Ca2+ accumulation [97]  
• mTOR & PI3K/AKT [224]  
• PTEN & AMPK [224] 

Chromium  • Caspase-1 by NF-κB 
[226]  

Iron   • Ferroptosis [229]  
• AP-1 [60]  
• PI3K/AKT [210] 

Mercury  • Caspase-3 by PI3K/AKT 
[163]  

• HIF-1α [212] 

Nickel  • Caspase-9 by BAX, BID, 
and cyt c [227]  

• Caspase-8 and caspase-10 
by Fas-FasL [75]  

Vanadium  • Caspase-9 by cyt c 
release [124]  

• Caspase-8 by Fas-FasL 
[124]   
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(10000 ppb for 4 weeks) can provoke an immunological reaction that 
leads to autoimmune disorders including proteinuria in murine models 
[239]. The authors also found that chronic low-dose cadmium exposure 
increases IgG2a synthesis, which can cause autoimmune 
glomerulonephritis. 

Cadmium causes respiratory disorders. Cadmium-induced oxidative 
stress enhances influenza virus proliferation. Cadmium-induced redox 
imbalance and subsequent activation of redox-sensitive cascades, 
including protein kinase C (PKC) and p38, JNK, and ERK MAPK path-
ways, may contribute to the process [240]. Higher cadmium levels in-
crease mortality from influenza and pneumonia and may aggravate 
COVID-19 pulmonary consequences [241]. Tight junctions control se-
lective paracellular diffusion of ions and solutes at bodily compartment 
boundaries [242]. Several protein kinases including proto-oncogene 
tyrosine-protein kinase (c-Src) and PKC modulate tight junction func-
tion and integrity. Cadmium exposure collapses this barrier function and 
increases chemical and biomolecule penetration by activating PKC or 
directly interrupting junctional interacting protein genes [243]. 
Ras-related protein 1 (Rap1) signaling is also involved in tight junction 
formation with atypical PKC [244]. In human airway edema cells, 
cadmium elevates mucin 8 expression through TLR4 mediated activa-
tion of ERK1/2 and p38 MAPK pathways [245]. Increased levels of 
mucin are positively associated with morbidity and mortality in in-
flammatory airway diseases such as chronic bronchitis, asthma, and 
chronic obstructive pulmonary disease (COPD) [246]. 

3.5.3. Effects of mercury 
Both organic and inorganic forms of mercury are immunotoxins 

[247]. Mercury induces autoimmune disease by altering cytokine levels. 
It triggers Th2 cytokines like IL-4 and suppresses Th1 cytokines like 
IFN-γ. Higher amounts of mercuric chloride can activate PKC that plays 
an important role in IL-4 production. On the other hand, MeHg is known 
to induce apoptosis in T lymphocytes which may explain the decrease in 
IFN-γ [248]. Mercuric chloride has a gender-specific immunotoxic effect 
on cytokine production (IL-2, IL-4, IL-10, and IFN-γ) in adult mice-
—inhibitory in females, stimulatory in males [249]. Immunotoxic ef-
fects of mercury can increase susceptibility to infections, malaria, and 
immunologically-mediated diseases [132]. Proteinuria, nephrotic syn-
drome, and membranous glomerulopathy are mercury-induced auto-
immune renal consequences [247]. Mercury alters the estrogenic effects 
on thymus development [70]. Inorganic mercury impairs the immune 
system, causing Kawasaki-like symptoms [250]. 

3.5.4. Effects of other heavy metals 
Immune response to Cr[VI] is dose-dependent. Lower concentrations 

of Cr[VI] stimulate lymphocyte blastogenesis, whereas higher concen-
trations inhibit it [251]. Likewise, lower doses of Cr[VI] enhance hu-
moral immune responses and macrophage phagocytic activity, but 
higher doses reduce any such effect [252]. Cr[VI] exposure is associated 
with rhinitis, bronchospasm, bronchial asthma, and pneumonia as well 
as impaired respiratory dynamics [253]. Chromium-induced ROS acti-
vates NF-κB, a key gene activator in inflammation, immunity, and 
apoptosis. Studies also link chromium to autoimmune disorders and 
hypersensitivity [253,254]. 

Iron causes hepatic inflammation. Iron overload causes oxidative 
stress, which activates apoptotic pathways in hepatocytes via Fas-FasL 
or TNF-TNF receptors, in individuals with chronic hepatitis C [62]. In 
hepatic fibrosis, oxidative stress reduces hepcidin expression. This is 
because the hepcidin transcription factor CCAAT/enhancer binding 
protein (C/EBP) cannot bind to the hepcidin promoter region as binding 
is inhibited by C/EBP homology protein expression, which is positively 
associated with ROS production [255]. Activation of histone deacetylase 
by ROS also affects the C/EBP binding capacity to the hepcidin promoter 
[256]. Hepatic iron buildup is also linked to chronic hepatitis B, alco-
holic liver disease, and non-alcoholic fatty liver disease [62]. 

Vanadium compounds are both inflammatory and 

immunosuppressors [257]. Vanadate induces pro-inflammatory cyto-
kines, such as IL-6, IL-8, and TNF-α, that contribute to the 
vanadium-induced respiratory inflammation [258,259]. Vanadium 
pentoxide (V2O5) affects IL-2-dependent PI3K/AKT/mTOR and MAPK 
pathways. It has also been reported to dysregulate or inhibit humoral 
responses in human and mice [257]. Inorganic vanadium compounds 
are known to activate the NF-κB pathway, which regulates the expres-
sion of pro-inflammatory mediators among other genes. However, a 
direct link between NF-κB pathway activation and vanadium-induced 
inflammatory responses is not yet known [124]. 

3.6. Metal allergy 

Metal hypersensitivity is a rising concern with around 10-15% of 
human population being afflicted by contact hypersensitivity [260]. 
Allergic responses to chromium, nickel, and mercury are the 
best-studied of all heavy metals. Chromium induces both type I 
(anaphylactic type) and type IV (delayed-type) hypersensitivity re-
actions [254]. After exposure, a person with a family history of atopy is 
more likely to develop a chromium allergy. Covalently bound chromium 
(Cr[III]) compounds with —SH groups, DNA-chromium-protein cross--
linked compounds, or oxidized proteins may act as allergenic epitopes 
[253]. Hexavalent chromium compounds are also known to cause sys-
temic contact dermatitis [261]. In one study, chromium exposure from 
Co-Cr hip prostheses increased TNF-α, GM-CSF, and IL-6 [262]. ROS 
induced by Cr[VI] causes K+ efflux and NLRP3 activation [263]. NLRP3 
activates caspase-1, which cleaves the precursors of the allergic cyto-
kines IL-1β and IL-18 [264]. Occupational exposure to chromium and its 
compounds has been reported to cause perforations of the nasal septum, 
bronchial asthma, allergic rhinitis, and contact allergic eczema [254]. 

Detailed nickel allergy mechanism is unknown, however the skin 
inflammation reaction involves production of cytokines and chemo-
kines, activation of antigen presenting cells that present nickel allergen 
to naive CD4+ T cells, and activation and proliferation of T cells 
following re-exposure [75]. According to a recent study, nickel directly 
activates human TLR4. Nickel-induced TLR4 activation leads to further 
activation of NF-κB and p38, inducing multiple pro-inflammatory cy-
tokines that trigger an allergic response. In this way, nickel directly 
triggers NF-κB-dependent activation of human dendritic cells, whereas 
other contact allergens require a second stimulus [265]. According to a 
study on systemic nickel allergy, there is a dose-relationship between the 
amount of nickel ingested and the frequency of dermatitis flare-ups, 
with even a single dose of 4 mg of nickel causing widespread derma-
titis in most nickel-allergic patients. Therefore, it is recommended that 
such individuals follow a low-nickel diet [261]. 

Mercury exposure is known to cause both type I (anaphylactic type) 
and type IV (delayed-type) hypersensitivity [266]. The most common 
allergic event is dental amalgam-related mercury allergy. Oral lichen 
planus, acrodynia, Kawasaki disease, and tattoo allergy are notable 
among others caused by prolonged exposure to mercuric compounds 
[250,267]. Local cytotoxic injury and subsequent tissue damage, i.e., 
injury of epithelial cells by T lymphocytes, is the most common mech-
anism of allergic response to mercury. Lyphadenopathy, transport of 
metal particles via the lymphatic system from skin or tissue followed by 
phagocytosis in macrophages, is another delayed-type (type IV) hyper-
sensitivity reaction to mercury [267]. 

4. Conclusion 

Heavy metal pollution is a global health and environmental concern. 
Sufficient evidence has supported the designation of ambient metal 
pollutants to be regarded as risk factors for cardiovascular, respiratory, 
metabolic, and neurological disorders. Rapid, uncontrolled urbanization 
and industrialization have exacerbated the release and exposure of 
heavy metals. Essential trace metals are needed for normal cellular and 
enzyme activity, including cellular metabolism, protein folding, DNA 
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replication, redox reactions, immune reactions, electron transport and 
other metabolite transport, signal transduction, and neurotransmitter 
synthesis. However, high levels of these and other non-essential heavy 
metals and metalloids can damage biomolecules, impair cellular redox 
status, alter signal transduction, and cause protein misfolding, 
apoptosis, and malignant transformation. 

We reviewed the association between arsenic, cadmium, chromium, 
iron, mercury, nickel, and vanadium exposure and disruptions in com-
mon metabolic signaling pathways and pathophysiological conditions 
such as diabetes, carcinogenesis, cardiovascular, neurodegenerative, 
allergic, and inflammatory diseases. Among these are the MAPK, AMPK, 
PI3K/AKT, NF-κβ, HIF-1, TNF-α, TLR, NLR, WNT/β-catenin, Notch, TGF- 
β/BMP, ferroptosis, and caspase signaling pathways associated with 
such toxicities. Almost all the heavy metals lead to an imbalance in the 
homeostasis of cellular antioxidants (Supplementary table 1). 

Some of these metals actually play a protective role by targeting 
those intracellular metabolic pathways. Arsenic and iron have anti- 
cancer properties, whilst chromium and vanadium supplements are 
now being investigated and trialled for the treatment of type 2 diabetes. 
Despite its possible involvement in carcinogenicity and neurotoxicity, 
vanadium is a pretty interesting metal since its complexes display potent 
insulin-mimetic effects that have promoted its use as an adjuvant in 
treating type 2 diabetes, and the ability to ameliorate the pathological 
conditions that are altered in neurodegenerative Alzheimer’s disease. 

The association between pathological states and alterations in 
metabolic pathways is complex, intricate, and dynamic in nature. This is 
a brief summary of the As, Cd, Cr, Fe, Hg, Ni, and V affected pathways 
and some associated diseases that are still being studied. Details and 
other inconclusive correlations between these metals and other diseases, 
such as renal toxicity, osteoporosis, gastrointestinal problems, etc., are 
not mentioned here. 
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S. Cervantes-Yépez, Inhalation of vanadium pentoxide and its toxic effects in a 
mouse model, doi.org/, Inorganica Chim. Acta. 420 (2014) 8–15, https://doi.org/ 
10.1016/j.ica.2014.03.027. 

[259] J.D. Carter, A.J. Ghio, J.M. Samet, R.B. Devlin, Cytokine production by human 
airway epithelial cells after exposure to an air pollution particle is metal- 
dependent, doi.org/, Toxicol. Appl. Pharmacol. 146 (1997) 180–188, https://doi. 
org/10.1006/taap.1997.8254. 

[260] Y. Wang, S. Dai, Structural basis of metal hypersensitivity, doi.org/, Immunol. 
Res. 55 (2013) 83–90, https://doi.org/10.1007/s12026-012-8351-1. 

[261] Y. Yoshihisa, T. Shimizu, Metal Allergy and Systemic Contact Dermatitis: An 
Overview, doi.org/, Dermatol. Res. Pract. 2012 (2012), 749561, https://doi.org/ 
10.1155/2012/749561. 

[262] D. Granchi, G. Ciapetti, S. Stea, L. Savarino, F. Filippini, A. Sudanese, G. Zinghi, 
L. Montanaro, Cytokine release in mononuclear cells of patients with Co-Cr hip 

prosthesis, doi.org/, Biomaterials. 20 (1999) 1079–1086, https://doi.org/ 
10.1016/S0142-9612(99)00004-6. 

[263] J. Buters, T. Biedermann, Chromium(VI) Contact Dermatitis: Getting Closer to 
Understanding the Underlying Mechanisms of Toxicity and Sensitization!, doi. 
org/, J. Invest. Dermatol. 137 (2017) 274–277, https://doi.org/10.1016/j. 
jid.2016.11.015. 

[264] N. Kelley, D. Jeltema, Y. Duan, Y. He, The NLRP3 Inflammasome: An Overview of 
Mechanisms of Activation and Regulation, doi.org/, Int. J. Mol. Sci. 20 (2019) 
3328, https://doi.org/10.3390/ijms20133328. 

[265] M. Saito, R. Arakaki, A. Yamada, T. Tsunematsu, Y. Kudo, N. Ishimaru, Molecular 
mechanisms of nickel allergy, doi.org/, Int. J. Mol. Sci. 17 (2016) 202, https:// 
doi.org/10.3390/ijms17020202. 

[266] S. Eneström, P. Hultman, Does Amalgam Affect the Immune System? A 
Controversial Issue (Part 1 of 2), doi.org/, Int. Arch. Allergy Immunol. 106 (1995) 
180–191, https://doi.org/10.1159/000236843. 

[267] G. Guzzi, P.D. Pigatto, Metal Allergy: Mercury, in: Metal Allergy, Springer 
International Publishing, Cham, 2018, pp. 397–421, doi.org/10.1007/978-3-319- 
58503-1. 

Z. Haidar et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.ica.2014.03.027
https://doi.org/10.1016/j.ica.2014.03.027
https://doi.org/10.1006/taap.1997.8254
https://doi.org/10.1006/taap.1997.8254
https://doi.org/10.1007/s12026-012-8351-1
https://doi.org/10.1155/2012/749561
https://doi.org/10.1155/2012/749561
https://doi.org/10.1016/S0142-9612(99)00004-6
https://doi.org/10.1016/S0142-9612(99)00004-6
https://doi.org/10.1016/j.jid.2016.11.015
https://doi.org/10.1016/j.jid.2016.11.015
https://doi.org/10.3390/ijms20133328
https://doi.org/10.3390/ijms17020202
https://doi.org/10.3390/ijms17020202
https://doi.org/10.1159/000236843
http://refhub.elsevier.com/S2214-7500(23)00046-X/sbref266
http://refhub.elsevier.com/S2214-7500(23)00046-X/sbref266
http://refhub.elsevier.com/S2214-7500(23)00046-X/sbref266

	Disease-associated metabolic pathways affected by heavy metals and metalloid
	1 Introduction
	2 Common molecular mechanisms of heavy metal toxicity
	3 Metabolic pathways affected by heavy metals and metalloid
	3.1 Carcinogenesis
	3.1.1 Effects of arsenic
	3.1.2 Effects of cadmium
	3.1.3 Effects of chromium
	3.1.4 Effects of iron
	3.1.5 Effects of vanadium
	3.1.6 Effects of other heavy metals

	3.2 Glucose metabolism and diabetes
	3.2.1 Effects of arsenic
	3.2.2 Effects of cadmium
	3.2.3 Effects of chromium
	3.2.4 Effects of iron
	3.2.5 Effects of other heavy metals

	3.3 Lipid metabolism, adipogenesis, and atherosclerosis
	3.3.1 Effects of arsenic
	3.3.2 Effects of cadmium
	3.3.3 Effects of mercury
	3.3.4 Effects of nickel
	3.3.5 Effects of other heavy metals

	3.4 Neurodegeneration
	3.4.1 Effects of arsenic
	3.4.2 Effects of iron
	3.4.3 Effects of mercury
	3.4.4 Effects of vanadium
	3.4.5 Effects of other heavy metals

	3.5 Inflammation and immune response
	3.5.1 Effects of arsenic
	3.5.2 Effects of cadmium
	3.5.3 Effects of mercury
	3.5.4 Effects of other heavy metals

	3.6 Metal allergy

	4 Conclusion
	Funding
	Declaration of Competing Interest
	Data Availability
	Acknowledgement
	Author contributions
	Appendix A Supporting information
	References


